Search results

Search for "dielectric constant" in Full Text gives 161 result(s) in Beilstein Journal of Nanotechnology.

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • LSPR effect highly depends on size, shape, composition, interparticle distance, dielectric constant, and surrounding medium of the particles [36][37]. While Pt, Ag, and Au particles all exhibit photothermal properties, Au nanoparticles are commonly used for photothermal applications. By changing the
PDF
Album
Review
Published 04 Oct 2023

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • (T) in the Cartesian coordinate system using the multipole decomposition technique. The multipole expansion is achieved based on the electric displacement current using the following formula: where ε0 represents the vacuum dielectric constant, n is the refractive index of the uniform background above
PDF
Album
Full Research Paper
Published 02 Jun 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • ·6H2O at the same filler load (20–50 wt %). This may be because both the real and imaginary parts of the carbon permittivity are higher than those of ZnO. Comparing the dielectric constant of SCZ0.5 and SiC@C at the same filler load of 30 wt %, the ε′ and ε″ values of SCZ0.5 are lower than the
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • two important properties of the liquids, namely dielectric constant and vapor pressure, on the transduction of the MFC-MWCNT sensors. These results were corroborated by independent heat flow measurements (thermogravimetric analysis). The proposed MFC-MWCNT sensor platform may help paving the way to
  • mechanism of polymer composites with physicochemical characteristics such as dielectric constant, specific heat, and vapor pressure [25][56][57]. Our ink-based devices could extract those characteristics even from unknown samples and mixtures. Finally, test analysis using principal component analysis (PCA
  • ) with physicochemical properties of the organic solvents (vapor pressure and dielectric constant) [63][64]. Guided by previous studies that show the electrical response is due to the swelling of CPCs [25][56][57], we found that the maximum value in the Gain curve (max) is proportional to the dielectric
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • constant of the surrounding medium and hence the LSPR frequency can be arrived at as [39]: Thus, for any morphology of a plasmonic nanoparticle, the LSPR frequency is intimately tied to the free electron density and the dielectric constant of the surrounding matrix. These factors thus decide the shape
  • different morphologies on plasmon excitation can be understood are hence crucial for assessing the PT properties of nanomaterials. 2.1.1 Tunability of the plasmon frequency – changes to the dielectric constant. In 1834, William Whewell coined the term dielectric [41]. In a dielectric material, positive
  • shown in prior sections) [42]. The real (εr) and imaginary part (εi) of the dielectric constant relate to the refractive index (n) and extinction coefficient (k), respectively. Energy from a time-varying incident electric field is dissipated in part as heat, termed as dielectric loss. It can be
PDF
Album
Review
Published 27 Mar 2023

Concentration-dependent photothermal conversion efficiency of gold nanoparticles under near-infrared laser and broadband irradiation

  • Vikas,
  • Raj Kumar and
  • Sanjeev Soni

Beilstein J. Nanotechnol. 2023, 14, 205–217, doi:10.3762/bjnano.14.20

Graphical Abstract
  • ]. Localized heat generation through GNPs under irradiation can be used for hyperthermia treatment of tumors, termed plasmonic photothermal therapy (PPTT) [7][8][9][10][11]. The net temperature rise of a GNP-containing medium highly depends on shape and size of the GNPs, the dielectric constant of the medium
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • on the semiconductor surface and ε0 is the dielectric constant of vacuum. A bias voltage Vdc + Vac·cos 2πft is applied between the tip and the semiconductor sample, where Vdc, Vac, and f are the DC bias voltage, amplitude of the AC bias voltage, and modulation frequency of the AC bias voltage
  • dielectric constant. LD is the Debye length for majority carriers (electrons), which characterizes the change in the potential inside the semiconductor. kB, T and e are the Boltzmann constant, absolute temperature, and elementary charge (e > 0), respectively. Since the applied voltage V is divided between
PDF
Album
Full Research Paper
Published 31 Jan 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • density of spinning solution (kg/m3), g is the gravitational acceleration (m/s2), h is the fluctuation height of the polymer spinning solution (m), γ is the surface tension coefficient of the spinning solution (N/m), ε0 is vacuum dielectric constant, E0 is the edge electric field intensity (V/m), Ep is
  • the electric field intensity of the thin liquid surface (V/m), εα is the dielectric constant of the polymer, and k is the amount of radial fluctuations on the spinning solution surface. In addition, the centripetal force F1 at point B is generated by the horizontal component of the viscous force (τ
PDF
Album
Full Research Paper
Published 23 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • Instruments). The dielectric constant of water was set to 80.4 and the Smoluchowsky constant f(ka) was 1.5. Synthetic route for the preparation of 1-PSN with a controlled patch-to-particle size ratio. TEM images of the silica/PS monopods after (a) 0, (b) 1, (c) 2, (d) 4, (e) 9, and (f) 14 iterative silica
PDF
Album
Full Research Paper
Published 06 Jan 2023

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • Mott–Schottky relationship involving the apparent capacitance as a function of the potential under depletion conditions [54]: where C, ε, ε0, N, A, Va, Vfb, k, and T are the capacitance of the space charge region, the dielectric constant of the semiconductor, the vacuum permittivity, the donor density
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • –Schottky analysis through the following equations [28][31][32]. where Csc, e, A, ε, ε0, kB, and T indicate the capacitance of the space charge region, charge of an electron, active area of the electrode, dielectric constant, permittivity of free space, Boltzmann’s constant, and absolute temperature
PDF
Album
Full Research Paper
Published 22 Nov 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • cylindrical, the potential change (ΔV) is given by [10]: where ε is the dielectric constant of the fluid, ε0 is the vacuum permittivity, R is the flow resistance of the channel, ζ is the zeta potential of the ionic double layer on the channel surfaces, η is the liquid viscosity, C is the ionic concentration
  • resistance and surface potential, directly contribute to the flow potential. At the same time, the parameters of the fluid in the nanochannel, such as dielectric constant and ion concentration, are directly related to the magnitude of the flow potential. In the nanochannel, the flow velocity ν of the fluid
PDF
Album
Review
Published 25 Oct 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • which is being currently employed in ultra-scaled electronics for its high dielectric constant [24][25] have received significant attention because of its practical applications. Thus, recently, exploiting first principles simulations and X-ray absorption near edge spectroscopy (XANES) in high magnetic
PDF
Album
Full Research Paper
Published 15 Sep 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • demonstrated in millimeter-sized superstructures formed by ZIF-8 or UiO-66 [131]. Owing to the porous structure of the monocrystalline coordination polymers. The dielectric constant of the particles may be changed upon adsorption of molecules such as organic vapor. This can lead to a change of the structural
PDF
Album
Review
Published 12 Aug 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • first to report that glycerol can serve as an effective green solvent for BBR NP formation. Being non-toxic, renewable, and biodegradable, and having a suitable dielectric constant to dissolve various compounds such as BBR, glycerol is a promising candidate to replace toxic organic solvents. The effect
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • polyols, such as high boiling point (up to 320 °C) and dielectric constant, the solubility of simple metal salt precursors, and coordinating properties for surface functionalization preventing agglomeration [27]. The ZnO NPs obtained from polyol synthesis showed excellent crystalline quality and
PDF
Album
Review
Published 27 May 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • proteins with specific biological functions, such as transferrin, insulin, albumin, mucin, or hemoglobin, may represent powerful candidates as next-generation biologics. The EHD jetting process is influenced by a number of governing principles, such as viscosity and dielectric constant of the premixture
  • used for all jetting experiments. This inclusion of ethanol decreased the dielectric constant and surface tension of the solution. The exception was insulin- and mucin-based SPNPs, which were manufactured as described in the Materials section. Furthermore, a homobifunctional amine-reactive macromer
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers

  • Tuğba Eren Böncü and
  • Nurten Ozdemir

Beilstein J. Nanotechnol. 2022, 13, 245–254, doi:10.3762/bjnano.13.19

Graphical Abstract
  • critical component of the bacterial cell walls [9]. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) was used as solvent in the study. It is preferred due to its sufficiently low surface tension, sufficiently high dielectric constant, and volatility [10]. The aim of this study was to produce and characterize
PDF
Album
Full Research Paper
Published 21 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • environments, and a high strength-to-weight ratio. Moreover, titanium is somewhat negatively charged at physiological pH values because of the formation of a passive oxide layer, and its dielectric constant is equivalent to that of water [25]. The specific energy structure of TiO2 is responsible for its
PDF
Album
Review
Published 14 Feb 2022

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

  • Mikhail M. Krasnov,
  • Natalia D. Novikova,
  • Roger Cattaneo,
  • Alexey A. Kalenyuk and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 1392–1403, doi:10.3762/bjnano.12.103

Graphical Abstract
  • influence radiative properties. To the contrary, for a whisker-based device a significant fraction of EMW is going into the substrate due to its larger dielectric constant. The difference of dielectric constants of the substrate and vacuum leads to internal reflections and the formation of standing waves in
PDF
Album
Full Research Paper
Published 21 Dec 2021

Enhancement of the piezoelectric coefficient in PVDF-TrFe/CoFe2O4 nanocomposites through DC magnetic poling

  • Marco Fortunato,
  • Alessio Tamburrano,
  • Maria Paola Bracciale,
  • Maria Laura Santarelli and
  • Maria Sabrina Sarto

Beilstein J. Nanotechnol. 2021, 12, 1262–1270, doi:10.3762/bjnano.12.93

Graphical Abstract
  • piezoelectric constant and, therefore, a high conversion efficiency. However, these materials are toxic, brittle, and not environmentally friendly. In order to overcome these disadvantages, several studies have investigated polymeric piezoelectric materials and nanostructured materials with high dielectric
  • constant and good piezoelectric properties suitable for the fabrication of flexible piezoelectric nanogenerators [1][2][3][4][5][6][7]. One of the most extensively investigated piezoelectric polymers is poly(vinylidene fluoride) (PVDF). This polymer has attracted a lot of interest due to its excellent
PDF
Album
Full Research Paper
Published 19 Nov 2021

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • techniques, such as the addition of ionic liquids (ILs) with low viscosity and high dielectric constant values or some suitable fillers have been used by the research community to increase the ionic conductivity of polymer electrolytes [6][7]. As mentioned above, one way to increase the ionic conductivity is
  • ][23], fluoropolymers such as poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) have received much attention from the research community as potential polymer hosts for the synthesis of polymer electrolytes [10][11][24][25]. The dielectric constant value of PVdF-HFP is ≈8.4 and it comprises a
  • tabulated in Table 2. Dielectric studies are some of the most important techniques to understand the effect of plasticizers, blending of polymers, inter-/intramolecular interactions, their transport mechanism, and relaxation behavior at a molecular level. Figure 6a and Figure 6b show the dielectric constant
PDF
Album
Full Research Paper
Published 18 Nov 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • the cubic π-SnSe alloy is presented in Figure 11a as a function of the photon energy. It can be observed that for the π-SnSe system, the static dielectric constant ε1(0) is 12.82, which is positive. The positive value of the real dielectric tensor ε1(ω) suggests that the studied material is a
PDF
Album
Full Research Paper
Published 05 Oct 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • layers result in repulsion between two particles, this force is constantly opposed by the attractive van der Waals force. The balance between these interparticle forces gives the total DLVO force and highly depends on system parameters, such as the electrolyte concentration and fluid dielectric constant
  • dielectric constant, respectively. Conversely, the attractive van der Waals force is given by [14]: where the characteristic energy scale is set by the Hamaker constant, A. It is noted that Equation 1 and Equation 2 assume spherical particles of equal radius and a sufficiently small separation distance (a
  • lattice arrangements are shown in Figure 5 and Figure 6, respectively. The total DLVO forces from both uniform (left) and non-uniform (right) aggregation are plotted as functions of particle spacing or particle radius and electrolyte concentration or fluid dielectric constant. The same general trends were
PDF
Album
Full Research Paper
Published 06 May 2021
Other Beilstein-Institut Open Science Activities